ORBIT OPTIONS FOR NEAR-TERM SPACE SOLAR POWER 🗓

— This presentation will consider alternative orbits.

Webinar
Online Event! Map

Coastal Los Angeles Chapter, MTT17
Co-sponsored by Coastal Los Angeles Section APS Chapter
register
Webinar Date: August 18, 2020 6PM
Speaker: Seth Potter
Location: on the Web

Cost: none
RSVP: Please register so we can send the meeting ID and password
Event Details & Registration: IEEE

Summary:
Studies of space solar power (SSP) for the commercial grid have usually considered transmitting power from geostationary orbit (GEO), via microwaves at frequencies below 10 GHz, where the atmosphere is relatively transparent. Due to beam divergence from that distance at such frequencies, system sizes must be be large, leading to power levels of 1000 MW or more. However, the scale of the systems, and the need to develop low-cost routine access to space, make competing with traditional energy sources challenging in the near-term. More recently, studies by the US Naval Research Laboratory have considered SSP for nearer-term niche uses in remote locations. At such locations, providing power by conventional means can be challenging. Many remote locations are typically powered by generators, which depend on fuel delivered at great cost, often through hazardous environments. Power requirements for such users range from a few hundred kilowatts to several megawatts. Furthermore, some remote facilities are at high latitudes, which are inaccessible from geostationary orbit. This presentation will consider alternative orbits. Examples of such orbits are highly inclined orbits, which may be sun-synchronous, or have a repeating ground track, or both. In addition, elliptical orbits may be considered which have relatively long dwell times over ground sites that are beneath their apogee. Since non-GEO orbits do not remain over their intended ground sites, systems or constellations, of satellites must be designed, in which beam handoffs can provide a given ground site with power much of the time, while making maximum use of the satellites as multiple satellites serve multiple ground sites.